Constraint-Based Scheduling

CHR Summer School 2013, Berlin
Dr. Armin Wolf

What is Constraint-Based Scheduling?

The allocation of actions to resources and in time such that
• the availability of resources and their capacities are respected
• temporal restrictions of the actions are considered: due/release dates, durations
• temporal relations between actions are satisfied: precedences, etc.

Constraint-Based Scheduling (all quantities have integer values)
uses local/global Operations Research methods for different kinds of problem classes:
• Two important problem classes: disjunctive and cumulative scheduling
• Local methods:
 • Forbidden Regions
 • Detectable Precedences
• Global methods:
 • Timetabling
 • Overload Checking
 • Edge Finding
 • Not-First/Not-Last Detection
➤ Performs "Pruning"/"Filtering", i.e. removal of inadmissible values
Things that may be scheduled I

Processes (Jobs)
• (standardized) work flows
 • consisting of activities
 • which require resources

Activities (Tasks)
• process steps, courses, treatments, pre- and post-processing, ...
• either preemptive or non-preemptive
• having minimal/maximal duration
• to be performed in a time slot
• require in general different resources

Things that may be scheduled II

Resources
• machines, tools, devices, persons, rooms, consumable products, energy, ...
• in general of restricted capacities
• are exclusive, alternative or cumulative
• are either consumed (e.g. water, energy) or re-usable (machines, persons)

Spatio-Temporal Relationships
• sequences/orders of activities
• minimal/maximal gaps between activities (e.g. between usage and cleaning)
• (sequence-dependent) set-up times (and costs)
• resource-dependent durations (e.g. slow and fast devices)
Modeling of Activities I

Task t

- is in general a non-preemptive activity
- has in general a variable start time $s = t.\text{start} \in S$, $\text{est} := \min(S)$, $\text{lst} := \max(S)$
- has in general a variable duration $d = t.\text{duration} \in D$
- has in general a variable end time $e = t.\text{end} \in E$
- satisfies the constraint $t.\text{start} + t.\text{duration} = t.\text{end}$

$\min(E)$ $\max(E)$

- N.B.: In general the value sets S, D, E of the variables s, d, e are called the domains of these variables: $\text{Dom}(s)$, $\text{Dom}(d)$, $\text{Dom}(e)$.

Modeling of Activities II

Task t

- has in general a variable capacity $t.\text{capacity} \in C$
- has in general a variable resource (identifier) $t.\text{resourceId} \in R$
- may be optional: $t.\text{duration} \in \{0, p, \ldots, q\}$ $0 < p \leq q$

→ useful to implement tasks on alternative resources:

A task on alternative resources is modeled by optional task with the same start times and the constraint that exactly one optional task must be mandatory.
Modeling of Resources I

Resource r
- is either exclusive with capacity $C_r = 1$
- or alternative exclusive \Rightarrow collection/pool of congeners
- or cumulative with capacity $C_r > 1$
- or alternative cumulative \Rightarrow collection/pool of congeners

\Rightarrow The capacity constraint has to be satisfied: $\forall t \forall \tau : \sum_{t_{\text{start}}}^{t_{\text{end}}} t_.capacity \leq C_r$

Modeling of Resources II

Reservoirs of consumer goods /commodities
- Here: "at-once" production/consumption at schedulable events C_i
- Can be modeled as a cumulative resource with fixed start/end activities \Rightarrow Exercise!
- Specialized pruning algorithms are also available (e.g., "envelope computation")
Disjunctive Scheduling

- means temporal "non-overlapping" of activities
 - either on exclusive resources
 - or on cumulative resources where the activities’ resource consumption is \(> \frac{C_r}{2} \)

Cumulative Scheduling

- means that activities may overlap in time
 - generalizes disjunctive scheduling (see capacity constraint before)
 - Operations Research methods are also applicable for disjunctive scheduling: \(C_r = 1 \)

Modeling of Multi-Resources Activities

Example: Cleaning of Devices

- allocates the device to be cleaned **and** requires a cleaning worker at the same time

\(\Rightarrow \) model: two tasks with identical times:
- the tasks: `cleanOnDevice` and `cleanByPerson` with
 - `cleanOnDevice.start = cleanByPerson.start`
 - `cleanOnDevice.duration = cleanByPerson.duration`
 - `cleanOnDevice.end = cleanByPerson.end`

\(\Rightarrow \) however on different/disjoint resources:
- `cleanOnDevice.resourceID \in \text{Devices}`
- `cleanByPerson.resourceID \in \text{Employees}`
- \(\text{Devices} \cap \text{Employees} = \emptyset \)
Modeling the Usage of Common Resources

Example: Choice within a Set of Tools
- Different kinds of work require specific-purpose tools (some of them are more general)
- However, which tools should be considered together?
 - naive: there are in one big pool
 - more sophisticated: consider the finest partition

The reason: reduction of algorithmic complexity: \(p_1^n + \ldots + p_n^n < (p_1 + \ldots + p_n)^n \)

Further Modeling Aspects

Temporal Relationships
- \(y - x \leq d \)
 - represented by a distance graph
 - computation of all minimal distances with the Floyd-Warshall algorithm \(O(n^3) \)
 - (sequence-dependent) set-up times and costs
 - resource-dependent processing times
 - modeling by use of "element" constraint:
 \[
 \text{element}(v, [\text{val}_0, \ldots, \text{val}_k], i) \leftrightarrow v = \text{val}_i
 \]
 \[
 \text{element}((\text{duration}, [\text{dur}_0, \ldots, \text{dur}_{n-1}]), \text{resourceID}) \leftrightarrow \text{duration} = \text{dur}_{\text{resourceID}}
 \]
 - etc.
Forbidden Regions in Disjunctive Scheduling
... and for some tasks of Cumulative Scheduling as well

The rule:

- Any start time of a task j is infeasible if another task i cannot be scheduled before nor after j.

<table>
<thead>
<tr>
<th>i</th>
<th>$\min(S_i) + d_i - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>$\min(S_j), \max(S_j) - d_j + 1$</td>
</tr>
<tr>
<td></td>
<td>$\max(S_j)$</td>
</tr>
<tr>
<td></td>
<td>$\max(S_j) + d_j$</td>
</tr>
</tbody>
</table>

- **local** pruning rule with **quadratic complexity** (in the number of tasks)
- removes in general “inner” values of the start time domains

Detectable Precedencies I in Disjunctive Scheduling
... and for some tasks of Cumulative Scheduling as well

The rule:

- If a task q cannot be scheduled after a task p then q must be before p

- More formally: $\text{ect}_p > \text{lst}_q \Rightarrow q << p$

- **local** pruning with **quadratic time complexity** (in the number of tasks)
Detectable Precedencies II

Generalization:

• If all tasks of a task set Ω are before p then p cannot start before the earliest completion time of Ω

$$\Omega = \{t \mid t \ll p\} \Rightarrow \text{est}_p^* = \max(\text{est}_p, \text{ect}_\Omega)$$

• More formally:

$$\Omega \subseteq \Theta \
\Rightarrow \text{est}_p^* = \max_{\Theta \in \Omega}(\text{est}_p + d_\Theta)$$

$$\text{ect}_\Omega := \max_{\Theta \in \Omega}(\text{est}_\Theta + d_\Theta)$$

$$\text{est}_\Theta := \min_{t \in \Theta} \text{est}_t \text{ and } d_\Theta := \sum_{t \in \Theta} d_t$$

Detectable Precedences III

• Generalized pruning is possible in $O(n \log n)$ time where n is the number of tasks

Petr Vilím: $O(n \log n)$ Filtering Algorithms for Unary Resource
In proceedings of CPAIOR 2004, Nice, France, April 2004,

• Symmetric pruning of the latest completion times is analogous.
Notations

For any task i

- it is assumed that the task has fixed duration d_i and fixed capacity c_i (either $=1$ or >1)
- and for i, variable start time $s_i \in S_i$ let
 - $\text{est}_i := \min(S_i)$ be its earliest start time (a.k.a. release date)
 - $\text{lct}_i := \max(S_i)$ be its latest start time
 - $\text{lct}_i := \min(S_i) + d_i$ be its earliest completion time
 - $\text{ect}_i := \max(S_i) + d_i$ be its latest completion time (a.k.a. due date)
 - $e_i := d_i c_i$ be its energy

For any set of tasks Ω let

- $\text{est}_\Omega := \min_{i \in \Omega} \text{est}_i$, $\text{lct}_\Omega := \max_{i \in \Omega} \text{lct}_i$, $e_\Omega := \sum_{i \in \Omega} e_i$
- if Ω is the empty set let $\text{est}_\Omega := +\infty$, $\text{lct}_\Omega := -\infty$ and $e_\Omega := 0.$

Cumulative Scheduling – Definition

We focus on Cumulative Scheduling because it is a generalization of Disjunctive Scheduling

A **Cumulative Scheduling Problem (CuSP)** is defined by

- a set of tasks T
- a resource with capacity C

A solution of the CuSP is a schedule that assigns a start time s_i to each task i such that

\[
\forall i \in T : \text{est}_i \leq s_i \leq s_i + d_i \leq \text{lct}_i
\]

\[
\forall \tau : \sum_{i \in \tau, s_i \leq \tau < s_i + d_i} c_i \leq C
\]
Cumulative Scheduling – E-Feasibility

E-Feasibility – a necessary condition for a solution

- For any non-empty subset Ω of the tasks in T the available energy must be greater or equal to the required energy:

$$\forall \Omega \subseteq T, \Omega \neq \emptyset : C(lct_\Omega - est_\Omega) \geq e_\Omega$$

How fast can E-Feasibility be checked?

- naive approach: consideration of all subsets: $O(2^n)$ where $n = |T|$.
- better approach: consideration of task sets Ω only including all tasks within the intervals $[est_{\Omega}, lct_{\Omega}]$, so called **task intervals**: $O(n^2)$:

For any two tasks p, q in T the set

$$\{ j | est_j \leq est_p \text{ and } lct_j \leq lct_q \}$$

is called a **task interval**

- best approach: $O(n \log n)$: "sweeping" over task intervals

Cumulative Scheduling – Timetabling I

Compulsory Parts

- If $|lct_i - d_i < est_i + d_i$ holds for a task i then the task i has a (non-empty) **compulsory part**, i.e.

 the task i always occupies capacity c_i within the interval $[lct_i - d_i, est_i + d_i]$

Timetabling

- The timetable TT of the CuSP is the aggregation of all compulsory parts of the tasks in T

- The CuSP has not any solution if the timetable exceeds the capacity C at some time τ
Cumulative Scheduling – Timetabling II

• Timetable TT represent the capacity profile occupied in each feasible schedule.

\Rightarrow There is not any feasible schedule if this profile exceed the capacity limit:

• A necessary condition for feasibility/satisfiability computable in $O(n \log n) \Rightarrow$ Exercise!

Cumulative Scheduling – Edge Finding I

The Main Idea
Discover a set of tasks Ω and a task i not in Ω such that in any solution, all the tasks in Ω end before the end of i – denoted by $\Omega \prec i$.

Then the earliest start time of i can be adjusted by the following rule:

$\Omega \prec i \Rightarrow \text{est}_i \geq \text{est}_i + \frac{1}{c_i} \text{rest}(\Theta, c_i)$

for all $\Theta \subseteq \Omega$ such that $\text{rest}(\Theta, c_i) > 0$, where

$\text{rest}(\Theta, c_i) = \begin{cases} \epsilon_i - (C - c_i)(\text{lct}_{\Theta} - \text{est}_{\Theta}) & \text{if } \Theta \neq \phi \\ 0 & \text{otherwise.} \end{cases}$

What is the strongest possible update of est_F?
Cumulative Scheduling – Edge Finding II

The possible updates

- The tasks in $\Omega = \{A, B, C, D, E\}$ they are not obviously ending before F ends.
- However, if we assume that F ends at or before a task in Ω then E-Feasibility is violated in the interval $[\text{est}(F), \text{lct}(A, C, D)]$ thus the condition $\Omega < F$ is satisfied.
- A first possible update with $\Theta = \Omega$ results in

A second – even better – update is possible with $\Theta = \{B, E\}$ independently whether the first update was performed or not!

\Rightarrow This allows a lazy iterative updating; the best updates will be found eventually

Cumulative Scheduling – Edge Finding III

The possible updates (cont.)
Cumulative Scheduling – Edge Finding IV

The relation Ω < i

- Let a set of tasks Ω and a task i not in Ω be given. The “edge finding” relation holds in two cases:
 1. \(\text{est}_i + d_i \geq \text{lct}_{Ω} \Rightarrow Ω < · i, \)
 2. \(e_{Ω∪\{i\}} > C(\text{lct}_{Ω} - \text{est}_{Ω∪\{i\}}) \Rightarrow Ω < · i. \)

- The first case is proved by contradiction (see example above)
- The second case holds obviously

Cumulative Scheduling – Edge Finding V

Computational Results

- There are algorithms which perform updates (not always the strongest) in \(O(n^2) \) time and \(O(n) \) space, e.g.

- Strongest updates require at most \(n-1 \) iterations

- Updating the lcts of the tasks with respect to edge finding is performed symmetrically: \(-\text{lct} \rightarrow \text{est}; -\text{est} \rightarrow \text{lct} \)
Cumulative Scheduling – Not-First/Not-Last Filtering I

The Main Idea
Discover a set of tasks \(\Omega \) and a task \(i \) not in \(\Omega \) such that in any solution \(i \) cannot be the first (resp. last) in \(\Omega \cup \{i\} \) (otherwise there will be an overload).
Then the earliest start time (resp. latest completion time) of \(i \) can be updated to the earliest completion time (resp. latest start time) of all tasks within the set \(\Omega \):

Consider the following example:
There task D cannot be the last regarding \(\Omega = \{A, B, C\} \).

Cumulative Scheduling – Not-First/Not-Last Filtering II

The Pruning Rules
- More formally the rules for an update are:
 \[
 \forall \Omega \subset T, \forall i \in T \setminus \Omega:
 \begin{align*}
 \text{est}_i < \min_{j \in \Omega} (\text{ect}_j, e_{i,\Omega}) + c_i \cdot \left(\min_{j \in \Omega} (\text{lct}_j, \text{est}_j) \right) \Rightarrow \text{est}_i \geq \min_{j \in \Omega} (\text{ect}_j) \\
 \text{(Not - First)}
 \end{align*}
 \]
 \[
 \begin{align*}
 \text{max}_{i \in \Omega} (\text{lct}_i) < \text{lct}_i + c_i \cdot (\text{lct}_i - \text{max}_{j \in \Omega} (\text{lst}_j, \text{est}_j)) \Rightarrow \text{lct}_i \leq \text{max}_{i \in \Omega} (\text{lst}_i) \\
 \text{(Not - Last)}
 \end{align*}
 \]
- What are the best updates and how to compute them?
Cumulative Scheduling – Not-First/Not-Last Filtering III

Computational Results

- There are algorithms which perform updates (not always the strongest) in $O(n^2 \log n)$ time, e.g.

- Strongest updates require at most $n-1$ iterations

Constraint-Based Energy Management

Load Balancing in Production
- e.g. peak reduction
 - by the use of a "dummy" task
 - requiring (maximal) capacity over the scheduling horizon

time optimized \Rightarrow high variations / peak loads
energy optimized \Rightarrow marginal time extension
Cost Reduction Based on Time-Variable Energy Tariffs

Motivation

- time-variable energy prices offers the opportunity to shift loads into cheap periods

Goal

Development of a constraint-based model for energy cost-optimized Scheduling
- for shiftable capacity loads
- under a time-variable capacity tariff
- over a fixed scheduling horizon
Consumers

Each Consumer V is defined by
- its start time: $\text{start}(V)$
- its end time: $\text{end}(V)$
- its duration: $\text{duration}(V)$

Load Profiles of Electrical Consumers (e.g. Dish Washers)

- Load profiles (capacity usages) are device-dependent and usage-specific ("mode/program")
- approximation by tasks with piecewise-constant capacities
Application Scenario: Reduction of Energy Costs in Households

Cost-Optimized Scheduling of Appliances in Households

- consideration of day-ahead energy prices (from EEX)
- real (measured) device-specific load profiles
- individual and process-specific constraints (time, capacity, etc.)

Consumers and its Tasks I

Each consumer V consists of a consecutive sequence of tasks: $[A^V_{1}, \ldots, A^V_{k}]$
Consumers and its Tasks II

Each task is defined by its (variable) start and end times, its (fixed) duration, its fixed consumption and its cost (depending on time).

Tasks of a consumer are executed consecutively. Breaks are tasks with consumption = 0. Consecutive tasks with the same consumption may be combined to one task.

Constraints

- Temporal: start(A) + duration(A) = end(A), end(A) = start(A_{i+1}), ...
- (Locally consistent)
- User-defined: off-times, sequences, non-overlapping, capacity restrictions, etc.
- For cost-calculation: consumption costs for consumers and their tasks
Off-Time Periods

A consumer V is not schedulable within its **off-times periods** (pre-defined time periods)

- The domains $\text{Dom}(\text{start}(V))$ and $\text{Dom}(\text{end}(V))$ has to be defined accordingly:

$$
\begin{align*}
[a - \text{duration}(V); b + 1] \subseteq \text{Dom}(\text{start}(V)) \\
[a + 1; b + \text{duration}(V)] \subseteq \text{Dom}(\text{end}(V))
\end{align*}
$$

Capacity Restrictions

The total capacity request (power request) of all consumers must not exceed a given capacity limit at any time (e.g. a limit is always given by the main fuse)

$$
\sum_{A \in \{A_1, \ldots, A_m\}} \text{consumption}(A) \leq \text{limit}
$$

This restriction will satisfied by the proper use of a **Cumulative** constraint:
Alternative Modeling of Consumers

How to model consumers with tasks?

- presented approach: consecutive sequence of tasks
- alternative (or additional) approach: horizontal stacking of tasks

What is the advantage of the alternative approach (remark: timetabling)?

Non-Overlapping (Mutual Temporal Exclusion)

Exclusive Usage of Resources (Locations, Devices, Humans, etc.)

- Repeated activations of the same device (washing)
- Operation of different devices by one operator (ironing, vacuum cleaning)

→ 2 consumers (i.e. their tasks) are never active at the same time:

\[(\text{end}(V_i) \leq \text{start}(V_j)) \lor (\text{end}(V_j) \leq \text{start}(V_i))\]

→ proper use of "parallel" tasks (with capacity 1) on Exclusive Resource constraints (for disjunctive scheduling; effective pruning algorithms)
Sequencing of Activities

Specific Workflows
- require a fixed sequence of activities (consumers), e.g. washing, drying, ironing, in particular with specific gaps
- Modeling by the use of Sum constraints (locally consistent):
 - \(\text{end}(V_1) + \text{delay}(V_1, V_2) = \text{start}(V_2) \)
 - with \(\text{Dom}(\text{delay}(V_1, V_2)) \subseteq [0; T - \text{duration}(V_1) - \text{duration}(V_2)] \)

\[\begin{array}{c}
0 & \text{end}(V_1) & \text{delay}(V_1, V_2) & \text{start}(V_2) & T \\
V_1 & \rightarrow & \rightarrow & \rightarrow & V_2
\end{array} \]

- Special cases
 1. unrestricted delay:
 - if \(\text{Dom}(\text{delay}(V_1, V_2)) = [0; T - \text{duration}(V_1) - \text{duration}(V_2)] \)
 - then \(\text{end}(V_1) \leq \text{start}(V_2) \)
 2. without delay: if \(D(\text{delay}(V_1, V_2)) = 0 \) then \(\text{end}(V_2) = \text{start}(V_2) \)

Shifts I

Settings:
- the scheduling horizon is split into "shifts" of the same duration (e.g. days of a week)
- Consumers may be in several shifts, then let
 - \(\text{PERIODS} \) – the number of shifts
 - each shift be identified by a number – from 0 to \(\text{PERIODS} - 1 \)
 - \(\text{SHIFTDURATION} \) – the fixed duration of each shift
- For any consumer \(V \) introduced the following additional variables
 - \(\text{shiftnumber}(V) \) – a variable with \(\text{Dom}(\text{shiftnumber}(V)) \subseteq [0; \text{PERIODS} - 1] \)
 - \(\text{shiftstart}(V) \) – a variable with \(\text{Dom}(\text{shiftstart}(V)) \subseteq [0; \text{SHIFTDURATION} - 1] \)
 - \(\text{shiftend}(V) \) – a variable with \(\text{Dom}(\text{shiftend}(V)) \subseteq [1; \text{SHIFTDURATION}] \)
Shifts II

Constraints:
- A consumer \(V \) must start and end within a specific shift:
 - \(T_0 + \text{shiftnumber}(V) \times \text{SHIFTDURATION} + \text{shiftstart}(V) = \text{start}(V) \)
 - \(T_0 + \text{shiftnumber}(V) \times \text{SHIFTDURATION} + \text{shiftend}(V) = \text{end}(V) \)
- Several consumers \(\{V_1, \ldots, V_n\} \) should start/end in the same shift:
 - \(\text{shiftnumber}(V_1) = \ldots = \text{shiftnumber}(V_n) \) (usage of one common variable is most efficient)
- Several consumers \(\{V_1, \ldots, V_n\} \) should start/end in (pairwise) different shifts:
 - \(\text{allDifferent} (\text{shiftnumber}(V_1), \ldots, \text{shiftnumber}(V_n)) \)
 (N.B.: infeasible if \(n > \text{PERIODS} \) holds)

![Shifts II Diagram]

Cost Calculation I

Consideration of a Time-Variable Tariff
- Energy price depends only on time
- Energy price is independent from used amount of energy

CP-Model: for each task \(A \) an **Element** constraint is generated:

\[\text{Element}\left(\text{cost}(A), C^A_0, \ldots, C^A_{\text{duration}(A)}, \text{start}(A)\right) \]

where
- \(C^A_i \) are the **costs of task\(A \) if started at time point \(i \).**
 - All these values are computable in advance on the basis of the given tariff
 - Exercise: How to compute these values efficiently over the scheduling horizon?

It holds:

\[\text{cost}(A) = C^A_{\text{start}(A)} \]

![Cost Calculation I Diagram]
Cost Calculation II

Total Cost of all Tasks \(\langle A_1, \ldots, A_m \rangle \):

\[
\sum_{i=1}^{m} \text{cost}(A_i) = \text{totalcost}
\]

Objective: minimize the value \(\text{totalcost} \) under consideration of all defined constraints: the CP becomes a COP.

Pros & Cons of the approach with an element constraint per each task:
- **Pro:** propagation in both directions – \(\text{start}(A) \leftrightarrow \text{cost}(A) \)
- **Con:** the other tasks of a consumer are not (directly) considered

→ **Integrating Approach:** introduction of redundant Element constraints for consumers consisting of several tasks.

Cost Calculation III

Extended Model

- one **Element** constraint for each consumer \(V \) with \(k > 1 \) tasks:

\[
\text{Element}(\text{cost}(V), [C^{V}_{i1}, \ldots, C^{V}_{ik}], \text{duration}(V), \text{start}(V))
\]

Where

- \(C^{V}_{ij} \) are the costs of consumer \(V \) if started at time point \(i \)
- \(C^{V}_{ij} = C^{A_{i1}} + \ldots + C^{A_{ik}} \)
 where \(i_1, \ldots, i_k \) are the start times of the tasks \(A_{i1}, \ldots, A_{ik} \) if \(V \) is started at time point \(i \)

Finally it holds

\[
\sum_{i=1}^{m} \text{cost}(A_i) = \sum_{j=1}^{n} \text{cost}(V_{ij}) = \text{totalcost}
\]
Cost Calculation IV

Further Information on Cost Aware Scheduling

Optimization

In General

- Only the start times of the consumers are labeled → the labeling of the other variables are determined accordingly (shifts, costs, etc.)

Branching & Bounding

- starts with a trivial lower cost bound (how to compute?) and a first solution yielding an upper bound of totalcost
- bounding of totalcost with decreasing values until the smallest value of totalcost is found:
- Search strategy:
 - uses dichotomic bounding (instead of monotonic bounding)
 - uses local consistency of the Sum and redundant Element constraints
 - selects cost(V) such that the one with greatest domain is considered first
 - selects the smallest value of cost(V) first (minimal local cost contribution)
The End

... & Another Tutorial on Constraint-Based Scheduling
http://www.math.unipd.it/~frossi/cp-school/lepape.pdf

Many thanks for your attention!

Contact

Fraunhofer Institute for
Open Communication Systems FOKUS
Kaiserin-Augusta-Allee 31
10589 Berlin, Germany
www.fokus.fraunhofer.de

Dr. Armin Wolf
Phone: +49 (30) 34 63 -7469
armin.wolf@fokus.fraunhofer.de