CSEN 102

Introduction to Computer Science

Lecture 4:

Algorithmic Problem Solving
Iterative Operations

Prof. Dr. Slim Abdennadher
Dr. Aysha Alsafty, slim.abdennadher@guc.edu.egq,
aysha.alsafty@guc.edu.eg

German University Cairo, Department of Media Engineering and Technology

21.10.2017 - 26.10.2017

1 Synopsis

1.1 Conditional operations

Synopsis — conditional operations
 Rationale

— Determines whether or not a condition is true; and based on whether or not
it is true; selects the next step to do

¢ Notation

— Use the same primitives as before plus the following:

1 if condition:

2 # <operations for the then-part>
3 else
4 # <operations for the else-part>

¢ Execution

— Evaluate condit ion expression to see whether it is true or false.
— If true, then execute operations in i £-part

— Otherwise, execute operations in else-part

Algorithms: operations

Algorithms can be constructed by the following operations:

* Sequential Operation
* Conditional Operation

e Iterative Operation

2 Iterative operations
2.1 Introduction
What is life?
“Life is just one damn thing after another.”

—Mark Twain

“Life isn’t just one damn thing after another...
it is the same damn thing over and over again.”

—Edna St. Vincent Millay

Iterative Operation — Loops
Repeat a set of steps over and over — also called a looping operation

2.2 Iterative operation — basics

Iterative Operation — syntax

General Format:
1 while <condition>:
2 step 1: <operation>
3 PP
4 step i: <operation>
Execution
1. Evaluate the condition
2. If condition is true, execute steps 1 to i, then go back to 1.

3. Otherwise, if condition is false continue the execution after the while loop.

Iterative operation — diagram

antecceding code

'

Initialize

False

Test Condition

Loop Body

]
—

succseeding code

2.3 Constructing iterative algorithms
How to write a while-loop?

1. Formulate the test which tells you whether the loop needs to be run again

count <= 3

2. Formulate the actions for the loop body which take you one step closer to termi-
nation

print ("count_is:", count)
count = count + 1 # add one to count

3. In general, initialization is required before the loop and some postprocessing
after the loop

count = 1

2.4 [Iterative operations: Examples

Iterative operations: Example I

Example 1. Given is a natural number n. Compute the sum of numbers from 1 to n.

1 n = eval (input ())

2 result =0

3 1 =1

4 while i <= n:

5 result = (result+i)
6 i = (i+1)

7 print (result)

Iterative operations: Example II

Example 2. Write an algorithm to perform the average of n numbers entered by the

user.

1 n = eval (input())
2 result =0

3 1 =1

4 while (i <= n):

5 num eval (input ())
6 result = result + num
7 i=1+1

9 average = result/n
10 print (average)

Iterative Operation: Example I11

Example 3. Multiplication of two integers N and M via addition

e Example: N =3and M =4 — N | M

W W W W W
(e \STRUSIEE N

1 N, M = eval (input ()), eval (input())
2 result =0

3 while M > O0:

4 result = result + N

5 M=M-1

6 print (result)

Iterative operations: Example IV

Example 4. Write an algorithm that, given a positive number n, will calculate and print

thevalueof nl=nx (n—1)x (n—2) x...x1

n = eval (input ())

2 result =1

while n > 1:
4 result = (result * n)
5 n= (n-1)

6 print (result)
Iterative operations: Example V
Example 5. Write an algorithm to find the largest of 4 numbers (range O to 10)

ma -1

b
=l

1

2 1=

3 while (i <= 4):

4 num = eval (input ())
if (num > max) :

6 max = num

8 i=1i+1

10 print (max)

Iterative operations: Example VI

Investment with Compound Interest:
Invest 10000 Euro with 5% interest compounded annually.

Year | Balance
0 10,000.—
1 10,500.—
2 11,025.—
3 11,576.25
4 12,155.06
5 12,762.82

Question: When will the balance be at least 20000 Euro?

Iterative operations: Example VI — Flowchart

antecceding code

'

Set initial balance

>

)

balance <
targeu?)alance

True +

Increment years

False

Add interest
to balance

i

succseeding code

Iterative operations: Example VI — Python
Compund interest python:

I balance = eval (input ())

2 rate = eval (input())
3 targetBalance = 20000
4 year =0

5 while (balance < targetBalance) :

6 year = year + 1

7 interest = balance * rate / 100
8 balance = balance + interest

9 print ("The investment doubled after")

10 print(year)

11 print ("years")

2.5 Iterative operations — Common Errors

Common errors — infinite loops
Infinite loops:

Example 1:
while (3 > 2): <operations>

Example 2:
while (x <20): y =y + 1

If this loop is entered at all, it will run forever. ..

Common errors - infinite loops
Why do these two algorithms not terminate?

1 i=1

2 while i < 10:

3 print (i)

1 A =1

2 while (A % 2 is 1): # check if A is odd
3 A=A+ 2

4

print (A) # the value of A

Common errors — “off by one”
Off-by-one errors

e Occur when loop executes one foo many or too few times (often called “+£1-
errors”)

» Example: Add even integers from 2 to number, inclusive

number = eval (input())

1

2 count = 2

3 result = 0

4 while count < number:

5 result = result + count
6 count = count + 2

* Produces incorrect result if number is assigned an even number. Values from
2 to number - 2 will be added (i. e., number is excluded)

e Should be “while (count <= number)”in line 4!

Common errors — “missing the target”

Compund interest python:

1 balance = eval (input ())

> rate = eval (input ())

3 targetBalance = 20000

4 year =0

5 while not balance == targetBalance:
Find the error in this version! year = year + 1

7 interest = balance x rate / 100

8 balance = balance + interest

9 print ("The_investment_doubled_after")
10 print (year)
11 print ("years")

Provide for reliable termination of the loop!

2.6 Iterative operations — hints for construction

Tracing
ALWAYS HAND-SIMULATE first, last and typical case through a loop

* to avoid off-by-one or infinite loop errors and

* to check the correctness of your algorithm.

3 Summary: Sequence, conditional, iteration
Sequence, conditional, and iteration in one algorithm

e Remember the Euclidean Algorithm from lecture 1, slide 28 to determine the
greatest common divisor (GCD) of two integers.

Method: To find the GCD of two numbers, repeatedly replace the larger by sub-
tracting the smaller from it until the two numbers are equal.

1 A, B = eval(input()), eval (input())
> while not A == B:

3 if A > B:

4 A = A B

5 else:

6 B =B - A

7 print ("The_GCD_is_")

8 print (3)

