
CSEN 102

Introduction to Computer Science

Lecture 4:

Algorithmic Problem Solving
Iterative Operations

Prof. Dr. Slim Abdennadher
Dr. Aysha Alsafty, slim.abdennadher@guc.edu.eg,

aysha.alsafty@guc.edu.eg

German University Cairo, Department of Media Engineering and Technology

21.10.2017 - 26.10.2017

1 Synopsis

1.1 Conditional operations
Synopsis – conditional operations

• Rationale

– Determines whether or not a condition is true; and based on whether or not
it is true; selects the next step to do

• Notation

– Use the same primitives as before plus the following:

1 if condition:
2 # <operations for the then-part>
3 else
4 # <operations for the else-part>

• Execution

– Evaluate condition expression to see whether it is true or false.

– If true, then execute operations in if-part

– Otherwise, execute operations in else-part

1



Algorithms: operations

Algorithms can be constructed by the following operations:

• Sequential Operation

• Conditional Operation

• Iterative Operation

2 Iterative operations

2.1 Introduction
What is life?

“Life is just one damn thing after another.”

—Mark Twain

“Life isn’t just one damn thing after another. . .
it is the same damn thing over and over again.”

—Edna St. Vincent Millay

Iterative Operation – Loops
Repeat a set of steps over and over – also called a looping operation

2



2.2 Iterative operation – basics
Iterative Operation – syntax

General Format:
1 while <condition>:
2 step 1: <operation>
3 ...
4 step i: <operation>

Execution

1. Evaluate the condition

2. If condition is true, execute steps 1 to i, then go back to 1.

3. Otherwise, if condition is false continue the execution after the while loop.

Iterative operation – diagram

Initialize

Test Condition

antecceding code

succseeding code

Loop Body

True

False

2.3 Constructing iterative algorithms
How to write a while-loop?

1. Formulate the test which tells you whether the loop needs to be run again

count <= 3

2. Formulate the actions for the loop body which take you one step closer to termi-
nation

print("count is:", count)
count = count + 1 # add one to count

3. In general, initialization is required before the loop and some postprocessing
after the loop

count = 1

3



2.4 Iterative operations: Examples
Iterative operations: Example I
Example 1. Given is a natural number n. Compute the sum of numbers from 1 to n.

1 n = eval(input())
2 result = 0
3 i = 1
4 while i <= n:
5 result = (result+i)
6 i = (i+1)
7 print(result)

Iterative operations: Example II
Example 2. Write an algorithm to perform the average of n numbers entered by the
user.

1 n = eval(input())
2 result = 0
3 i = 1
4 while (i <= n):
5 num = eval(input())
6 result = result + num
7 i = i + 1
8

9 average = result/n
10 print(average)

Iterative Operation: Example III
Example 3. Multiplication of two integers N and M via addition

• Example: N = 3 and M = 4 → N M result
3 4 0
3 3 3
3 2 6
3 1 9
3 0 12

1 N, M = eval(input()), eval(input())
2 result = 0
3 while M > 0:
4 result = result + N
5 M = M - 1
6 print(result)

Iterative operations: Example IV
Example 4. Write an algorithm that, given a positive number n, will calculate and print
the value of n! = n× (n− 1)× (n− 2)× . . .× 1

4



1 n = eval(input())
2 result = 1
3 while n > 1:
4 result = (result * n)
5 n = (n - 1)
6 print(result)

Iterative operations: Example V
Example 5. Write an algorithm to find the largest of 4 numbers (range 0 to 10)

1 max = -1
2 i = 1
3 while (i <= 4):
4 num = eval(input())
5 if (num > max):
6 max = num
7

8 i = i + 1
9

10 print(max)

Iterative operations: Example VI

Investment with Compound Interest:
Invest 10000 Euro with 5% interest compounded annually.

Year Balance
0 10,000.–
1 10,500.–
2 11,025.–
3 11,576.25
4 12,155.06
5 12,762.82

Question: When will the balance be at least 20000 Euro?

Iterative operations: Example VI – Flowchart

Add interest
to balance

succseeding code

True

Falsebalance <
targetBalance

?

Set initial balance

antecceding code

Increment years

5



Iterative operations: Example VI – Python

Compund interest python:
1 balance = eval(input())
2 rate = eval(input())
3 targetBalance = 20000
4 year = 0
5 while (balance < targetBalance):
6 year = year + 1
7 interest = balance * rate / 100
8 balance = balance + interest
9 print("The investment doubled after")

10 print(year)
11 print("years")

2.5 Iterative operations – Common Errors
Common errors – infinite loops

Infinite loops:

Example 1:
while (3 > 2): <operations>

Example 2:
while (x <20): y = y + 1

If this loop is entered at all, it will run forever. . .

Common errors – infinite loops
Why do these two algorithms not terminate?

1 i = 1
2 while i < 10:
3 print(i)

1 A = 1
2 while (A % 2 is 1): # check if A is odd
3 A = A + 2
4 print(A) # the value of A

Common errors – “off by one”
Off-by-one errors

• Occur when loop executes one too many or too few times (often called “±1-
errors”)

• Example: Add even integers from 2 to number, inclusive

1 number = eval(input())
2 count = 2
3 result = 0
4 while count < number:
5 result = result + count
6 count = count + 2

6



• Produces incorrect result if number is assigned an even number. Values from
2 to number - 2 will be added (i. e., number is excluded)

• Should be “while (count <= number)” in line 4!

Common errors – “missing the target”

Compund interest python:

Find the error in this version!

1 balance = eval(input())
2 rate = eval(input())
3 targetBalance = 20000
4 year = 0
5 while not balance == targetBalance:
6 year = year + 1
7 interest = balance * rate / 100
8 balance = balance + interest
9 print("The investment doubled after")

10 print(year)
11 print("years")

Provide for reliable termination of the loop!

2.6 Iterative operations – hints for construction
Tracing

ALWAYS HAND-SIMULATE first, last and typical case through a loop

• to avoid off-by-one or infinite loop errors and

• to check the correctness of your algorithm.

3 Summary: Sequence, conditional, iteration
Sequence, conditional, and iteration in one algorithm

• Remember the Euclidean Algorithm from lecture 1, slide 28 to determine the
greatest common divisor (GCD) of two integers.

• Method: To find the GCD of two numbers, repeatedly replace the larger by sub-
tracting the smaller from it until the two numbers are equal.

1 A, B = eval(input()), eval(input())
2 while not A == B:
3 if A > B:
4 A = A - B
5 else:
6 B = B - A
7 print("The GCD is ")
8 print(A)

7


