
German University in Cairo
Faculty of Media Engineering and Technology
Prof. Dr. Slim Abdennadher
Dr. Aysha ElSafty

Introduction to Computer Science, Winter Semester 2017
Practice Assignment 5

Discussion: 4.11.2017 - 9.11.2017

Exercise 5-1 Add GPA Bonus
To Be Solved in Lab

Given a list A of floating-point numbers, representing students’ GPAs, and a bonus mark as inputs from
the user, write a Python algorithm that adds the bonus mark to all students’ GPAs.

Solution:

list_A = eval(input())
bonus = eval(input())
i = 0
n = len(list_A)
while i < n:

list_A[i] = list_A[i] + bonus
i = i + 1

print(list_A )

Exercise 5-2 Check Sorted List
To Be Discussed in Tutorial

Given a list A of numbers, write an algorithm to check whether the list is sorted in ascending order or
not.

Solution:

• A= eval(input())
size = len(A)
check ="sorted"
i=0
while(i<size-1 and check!="unsorted"):

if(A[i]>A[i+1]):
check="unsorted"

i+=1

print(check)

• A= eval(input())
size = len(A)
check =True
i=0
while(i<size-1 and check==True):

if(A[i]>A[i+1]):
check=False

i+=1

1



if(check): #if check == True
print("Sorted")

else:
print("Unsorted")

Exercise 5-3 Find Key in Sorted List

The simplest algorithm to search a list of Numbers N for a given key Key is to test successively each
element.

N = eval(input("Enter a list of numbers:"))
m = len(N)
Key = eval(input("Enter a key:"))
i = 0
FOUND = False
while i < m and FOUND == False:

if Key == N[i]:
FOUND = True

else:
i = i+1

if FOUND == False:
print("Sorry, key is not in the list")

else:
print("Key found")

If a list is already stored in increasing order, a modified sequential search algorithm can be used that
compares against each element in turn, stopping if a list element exceeds the target value.
Write an algorithm for the modified sequential search.

Solution:

N = eval(input("Enter a list of numbers: "))
m = len(N)
key = eval(input("Enter a key: "))
i = 0
FOUND = False
while i < m and FOUND == False and key >= N[i]:

if key == N[i]:
FOUND = True

else:
i = i+1

if FOUND == False:
print("Sorry, key is not in the list")

else:
print("Key found")

Exercise 5-4 Sum of Lists
To Be Discussed in Tutorial

Given two lists A and B, write an algorithm that uses looping to store the sum of the corresponding
elements of the lists A and B in a new list C.

Note: Assume that lists A and B have the same length.

Solution:

2



• list_A = eval(input())
list_B = eval(input())
list_C = [] # list_C has length = 0
i = 0
n = len(list_A)
while i < n:

s = list_A[i] + list_B[i]
list_C = list_C + s # append on list_C
i = i + 1

print(list_C)

• list_A = eval(input())
list_B = eval(input())
n = len(list_A)

list_C = [0] * n # list_C has the same length as list_A (or list_B)
i = 0
while i < n:

s = list_A[i] + list_B[i]
list_C[i] = s # set the value at index i of list_C to s
i +=1

print(list_C)

Exercise 5-5 Dice Role

Write an algorithm that prints a list of n dice six-sided rolls.

Solution:

import random

n = eval(input())

i = 0
list_C = []
while (i < n):

list_C = list_C+ random.randint(1, 6)
i = i + 1

print(list_C)

Exercise 5-6 Find Largest Number

Write an algorithm to find the maximum value stored in an (unsorted) list A.

Solution:

list_A = eval(input())
n = len(list_A)
largest_so_far = list_A[0]
i = 1
while (i < n):

if (list_A[i] > largest_so_far):
largest_so_far = list_A[i]

3



i = i + 1

print(largest_so_far)

Exercise 5-7 Thousand Numbers
To Be Solved in Lab

Given a list of non-negative numbers. Write an algorithm to find the number of

• even positive numbers

• odd positive numbers

• Zeros

Additionally, the algorithm should find the sum of

• even positive numbers

• odd positive numbers

Solution:

list_A = eval(input()) # preferably large
n = len(list_A)
i = 0
evenCount = 0
oddCount = 0
zeros = 0
evenSum = 0
oddSum = 0
while (i < n):

if (list_A[i] == 0):
zeros = zeros + 1

else:
if (list_A[i] %2 == 0):
evenCount = evenCount + 1
evenSum = (evenSum + list_A[i])

else:
oddCount = oddCount+1
oddSum = (oddSum + list_A[i])

i = i + 1
print("The number of even numbers is:",evenCount)
print("The sum of even numbers is:",evenSum)
print("The number of odd numbers is:",oddCount)
print("The sum of odd numbers is:",oddSum)
print("The number of zeros is:",zeros)

Exercise 5-8 Print Repeated
To Be Discussed in Tutorial

Write an algorithm that given an ordered list of integers A prints the elements in the list that are
repeated. If some elements occur more than twice, then these elements should be printed only once.

For example, for the list

4



1 1 1 1 4 6 7 7 8

your algorithm should print

1 7

Solution:

• list_A = eval(input())
n = len(list_A)
i = 0
printed = False
while i < n - 1:

if (list_A[i] != list_A[i+1]):
printed = False

else:
if printed == False:
print(list_A[i])
printed = True

i = i + 1

• list_A = eval(input())
n = len(list_A)
i = 0
repeated = False
while i < n - 1:

if (list_A[i] != list_A[i+1]):
if(repeated): #if repeated==True

print(list_A[i])
repeated=False

else:
repeated=True

i = i + 1

if(repeated): # to handle the case of having repeated values at the end
print(list_A[i])

• A = eval(input())
num = A[0] - 1
i = 0
n = len(A)
while (i < n-1):

if(num != A[i]):
if (A[i] == A[i+1]):
num = A[i]
print(num)
i = i + 2

else:
i = i + 1

else:
i = i + 1

Exercise 5-9 Reverse List

Write an algorithm that reverses the order of elements of the given list.

Solution:

5



• Reverse in place

list_A = eval(input())
n = len(list_A)
i = 0
j = n-1
while(i < n//2):

temp = list_A[i]
list_A[i] = list_A[j]
list_A[j] = temp
i = i+1
j = j-1

print(list_A)

• Reverse in new list by appending

list_A = eval(input())
n = len(list_A)
list_B = [] # list_B has length = 0
i = 0
j = n-1
while(i < n):

list_B = list_B+ list_A[j] # append on list_B
i = i+1
j = j-1

print(list_B)

• Reverse in new list by iterating over the new list

list_A = eval(input())
n = len(list_A)
list_B = [0] * n # list_B has length = n, all cells have value = 0
j = n-1 # counter for list_A
i = 0 # counter for list_B
while(i < n):

list_B[i] = list_A[j] # each cell in list_B is now changed
i = i+1
j = j-1

print(list_B)

Exercise 5-10 Change Order

Write an algorithm that given a list of integers A moves all even elements in a list of integers to the front
of the list and all odd elements to the rear.

Hint: you do not have to maintain any order other than all evens appearing before all odds in the list.

For example: if the list is of the form [1,4,5,6,2,10] then the algorithm should create a new list of the
form [4,6,2,10,5,1] and prints the elements of the resulting list.

Solution:

list_A = eval(input())
n = len(list_A)
list_B = [0] * n
i = c = 0

6



j = n - 1
while(c < n):

if (list_A[c] % 2 == 1):
list_B[j] = list_A[c]
j = j - 1

else:
list_B[i] = list_A[c]
i = i + 1

c = c + 1
print(list_B)

Exercise 5-11 Show Occurrences
To be Solved in Lab

Write an algorithm that given a list of integers A and a number x prints the number of occurrences of x
in the list. In addition, the algorithm should print the positions where x occurs.
For example, if the list is [1, 2, 4, 1, 3] and x is 1 then the algorithm should print
1 occurs in the following positions: 0, 3
The number of occurences of 1 is 2
If the list is [1, 2, 4, 1, 3] and x is 0 then the algorithm should print
The number of occurences of 0 is 0

Solution:

list_A = eval(input())
n = len(list_A)
x = eval(input())
i = 0
occurence = 0
while (i < n):

if (x == list_A[i]):
occurence = occurence + 1

i = i + 1

if (occurence == 0):
print("The number of occurences of", x , "is" , 0)

else:
print(x, "occurs in the following positions:")
i = 0
while (i < n):
if (x == list_A[i]):
print(i)

i = i + 1
print("The number of occurences of" , x , "is", occurence)

7


