German University in Cairo

Faculty of Media Engineering and Technology
Prof. Dr. Slim Abdennadher

Dr. Aysha ElSafty

Introduction to Computer Science, Winter Semester 2017
Practice Assignment 5

Discussion: 4.11.2017 - 9.11.2017

Exercise 5-1 Add GPA Bonus
To Be Solved in Lab

Given a list A of floating-point numbers, representing students’ GPAs, and a bonus mark as inputs from
the user, write a Python algorithm that adds the bonus mark to all students’ GPAs.

Solution:

list_A = eval(input())

bonus = eval(input())

i=20

n = len(list_A)

while i < n:

— list_A[i] = list_A[i] + bonus
—i1i=1i+1

print(list_A )

Exercise 5-2 Check Sorted List
To Be Discussed in Tutorial

Given a list A of numbers, write an algorithm to check whether the list is sorted in ascending order or
not.

Solution:

e A= eval(input())
size = len(A)
check ="sorted"
i=0
while(i<size-1 and check!="unsorted"):
. if(A[i]>A[i+1]):
. .. check="unsorted"
. i+=1

print (check)

e A= eval(input())
size = len(A)
check =True
i=0
while(i<size-1 and check==True):
— if(A[i]>A[i+1]):
—. . check=False
. i+=1



if (check): #if check == True
— print("Sorted")

else:

— print("Unsorted")

Exercise 5-3 Find Key in Sorted List

The simplest algorithm to search a list of Numbers N for a given key Key is to test successively each
element.

N = eval(input("Enter a list of numbers:"))
m = len(N)

Key = eval(input("Enter a key:"))

i=0

FOUND = False

while i < m and FOUND == False:

—. if Key == N[i]:

—. . FOUND = True

— else:

— — i=1i+1

if FOUND == False:

— print("Sorry, key is not in the list")
else:

—. print("Key found")

If a list is already stored in increasing order, a modified sequential search algorithm can be used that
compares against each element in turn, stopping if a list element exceeds the target value.
Write an algorithm for the modified sequential search.

Solution:

N = eval(input("Enter a list of numbers: "))

m = len(N)
key = eval(input("Enter a key: "))
i=0

FOUND = False

while i < m and FOUND == False and key >= N[i]:
__ if key == N[il:

—. . FOUND = True

—. else:
— — 1 =1+

if FOUND == False:

—. print("Sorry, key is not in the list")
else:

— print("Key found")

Exercise 5-4 Sum of Lists
To Be Discussed in Tutorial

Given two lists A and B, write an algorithm that uses looping to store the sum of the corresponding
elements of the lists A and B in a new list C.

Note: Assume that lists A and B have the same length.

Solution:



e list_A = eval(input())
list_B = eval(input())
list_C = [1 # list_C has length = 0
i=20
n = len(list_A)

while i < n:

— s = list_A[i] + 1list_B[i]

— 1list_C = 1ist_C + s # append on list_C
—i=1i+1

print(list_C)

e list_A = eval(input())
list_B = eval(input())
n = len(list_A)

list_C = [0] * n # list_C has the same length as list_A (or list_B)
i=0

while i < n:

— s = list_A[i] + list_B[il

. 1list_C[i] = s # set the value at index i of 1list_C to s

. i +=1

print(list_C)

Exercise 5-5 Dice Role

Write an algorithm that prints a list of n dice six-sided rolls.

Solution:

import random
n = eval(input())

i=20

list_C = []

while (i < n):

. list_C = 1list_C+ random.randint(1, 6)
. i=1+1

print(list_C)

Exercise 5-6 Find Largest Number

Write an algorithm to find the maximum value stored in an (unsorted) list A.

Solution:

list_A = eval(input())

n = len(list_A)

largest_so_far = list_A[0O]

i=1

while (i < n):

— if (list_A[i] > largest_so_far):
. largest_so_far = list_A[i]



print(largest_so_far)

Exercise 5-7 Thousand Numbers
To Be Solved in Lab

Given a list of non-negative numbers. Write an algorithm to find the number of

e even positive numbers
e odd positive numbers

e Zeros

Additionally, the algorithm should find the sum of

e even positive numbers

e odd positive numbers

Solution:

list_A = eval(input()) # preferably large
n = len(list_A)

i=0

evenCount = 0

oddCount = 0

zeros = 0

evenSum = 0

oddSum = 0

while (i < n):

. if (list_A[i] == 0):

... zeros = zeros + 1

—. else:

. if (list_A[i] %2 == 0):

— ... evenCount = evenCount + 1

. ... evenSum = (evenSum + list_A[i])

.. €else:

... 0oddCount = oddCount+1

— . .. 0ddSum = (oddSum + list_A[i])

. i=1+1

print("The number of even numbers is:",evenCount)
print("The sum of even numbers is:",evenSum)
print ("The number of odd numbers is:",oddCount)
print("The sum of odd numbers is:",oddSum)
print ("The number of zeros is:",zeros)

Exercise 5-8 Print Repeated
To Be Discussed in Tutorial

Write an algorithm that given an ordered list of integers A prints the elements in the list that are
repeated. If some elements occur more than twice, then these elements should be printed only once.

For example, for the list



1111467738
your algorithm should print

17

Solution:

e list_A = eval(input())
n = len(list_A)
i=20
printed = False
while i < n - 1:
— if (list_A[i] !'= list_A[i+1]):
— .. printed = False
— else:
—.. if printed == False:
. print(list_A[i])
—w .. printed = True
—i=1i+1

e list_A = eval(input())
n = len(list_A)
i=0
repeated = False
while i < n - 1:
— if (list_A[i] '= list_A[i+1]):
—. . if(repeated): #if repeated==True
— — . print(list_A[il)
— . repeated=False
— else:
—. . repeated=True
—i=1i+1

if (repeated) : # to handle the case of having repeated values at the end
— print(list_A[i])

e A = eval(input())
num = A[0] - 1
i=0
n = len(A)
while (i < n-1):
. if(num !'= A[i]):
o if (A[i] == A[i+1]):
. num = A[i]
. print(num)
e e i=1+2

— .. else:
e . i=1i+1
. else:

e i=1i+1

Exercise 5-9 Reverse List

Write an algorithm that reverses the order of elements of the given list.

Solution:



e Reverse in place

list_A = eval(input())
n = len(list_A)

i=0

j = n-1

while(i < n//2):

— temp = list_A[i]

_ 1ist_A[i] = list_A[j]
— list_A[j] = temp

— i =i+1

. § o= j-1
print(list_A)

e Reverse in new list by appending

list_A = eval(input())

n = len(list_A)

list_ B = [] # list_B has length = 0

i=0

j = n-1

while(i < n):

— list_B = list_B+ list_A[j] # append on list_B
— 1 =i+l

—§ = j-1

print(list_B)

e Reverse in new list by iterating over the new list

list_A = eval(input())

n = len(list_A)

list_ B = [0] * n # list_B has length = n, all cells have value = 0
j =n-1 # counter for list_A

i=0 # counter for list_B

while(i < n):

— list_B[i] = list_A[j] # each cell in list_B is now changed

. 1= 1i+1

o j = j-1

print(list_B)

Exercise 5-10 Change Order

Write an algorithm that given a list of integers A moves all even elements in a list of integers to the front
of the list and all odd elements to the rear.

Hint: you do not have to maintain any order other than all evens appearing before all odds in the list.
For example: if the list is of the form [1,4,5,6,2,10] then the algorithm should create a new list of the
form [4,6,2,10,5,1] and prints the elements of the resulting list.

Solution:

list_A = eval(input())
n = len(list_A)
list_B = [0] * n
i=c=0



j=mn-1

while(c < n):

— if (list_Aflc]l % 2 == 1):
—— 1list_B[j] = list_Al[c]
— j=3-1

. else:

.. list_B[i] = list_A[c]
. i=1i+1

. c=c+1

print(list_B)

Exercise 5-11 Show Occurrences
To be Solved in Lab

Write an algorithm that given a list of integers A and a number x prints the number of occurrences of x
in the list. In addition, the algorithm should print the positions where x occurs.

For example, if the list is [1, 2, 4, 1, 3] and x is 1 then the algorithm should print

1 occurs in the following positions: 0, 3

The number of occurences of 1 is 2

If the list is [1, 2, 4, 1, 3] and x is 0 then the algorithm should print

The number of occurences of 0 is 0

Solution:

list_A = eval(input())

n = len(list_A)

x = eval(input())

i=0

occurence = 0

while (i < n):

. if (x == 1list_A[i]):

... occurence = occurence + 1
. i=1i+1

if (occurence == 0):

— print("The number of occurences of", x , "is" , 0)
else:

— print(x, "occurs in the following positions:")
..1i=20

— while (i < n):

. if (x == list_A[il):
. print(i)

v . i=1i+1

. print("The number of occurences of" , x , "is", occurence)



