
German University in Cairo
Faculty of Media Engineering and Technology
Prof. Dr. Slim Abdennadher
Dr. Aysha ElSafty

Introduction to Computer Science, Winter Semester 2017
Practice Assignment 7

Discussion: 02.12.2017 - 07.12.2017

Exercise 7-1 To be discussed

Given the following three algorithms for finding the larger number among three numbers.

• Algorithm 1:

a = eval(input())
b = eval(input())
c = eval(input())

if (a >= b) and (a >= c):
print(a)

if (b >= a) and (b >= c):
print(b)

if (c >= b) and (c >= a):
print(c)

• Algorithm 2:

a = eval(input())
b = eval(input())
c = eval(input())

if (a >= b):
if (a >= c):

print(a)
else:

print(c)
else:

if (b >= c):
print(b)

else:
print(c)

• Algorithm 3:

a = eval(input())
b = eval(input())
c = eval(input())
max = a

if (b > max):
max = b

if (c > max):
max = c

print(max)

1



a) Compare the efficiency of the three algorithms. Please justify your answer.

b) Determine the order of magnitude of the three algorithms.

Exercise 7-2 To be discussed

Given the following algorithms:

a) Algorithm 1 computes the sum from 1 to n:

n = eval(input())
result = 0
i = 1
while (i <= n):

result = result+i
i = i+1

print(result)

b) Algorithm 2 finds the smallest value in a list A0,...,A(n-1).

list_A = eval(input())
k = len(list_A)
S = list_A[0]
i = 1
while (i < k):

if (list_A[i] < S):
S = list_A[i]

i = i + 1
print(S)

c) Algorithm 3 prints out 64, 32, 16, 8, 4, 2.

i = 64
while (i > 1):

print(i)
i = int(i/2)

Find the total number of executed instructions of the algorithms and determine their order of magnitude
(the big-O).

Exercise 7-3

Find the total number of instructions and the order of magnitude of the following algorithms

a) import math

m, n = eval(input()), eval(input())
a = ((m * m) - (n * n))
b = (2 * m * n)
c = (math.sqrt((a * a) + (b * b)))

print(" The Pythagorean Triple consists of the following sides: ")
print(a, b, c)

2



b) x, y, z = eval(input()), eval(input()), eval(input())
if (x > 0):

average = (x + y + z)/3
print(average)

else
print("Bad data")

endif

c) n = eval(input())
F = [1, 1]
i = 2
while i < n:

F = F + F[i-1] + F[i-2]
print(F[i])
i = i + 1

Exercise 7-4 To be discussed

Consider the following algorithm:

n = eval(input())
i = 1
sum = 0
while i <= n:

sum = sum + (1/i - 1/(i+2))
i = i + 4

print(sum)

a) What is the output of the algorithm for n = 10? You do not need to calculate the final result.

b) Calculate the total number of executed instructions of the algorithm and give its order of magni-
tude.

Exercise 7-5 To be discussed
Mystery

Consider the following algorithm:

n = eval(input())
m = eval(input())
y = 0

while(n>0):
y += 1
n -= 1

while(m>0):
y += 1
m -= 1

print(y)

a) What is the output of the algorithm for n = 5 and m = 3?

b) What is the functionality of the algorithm?

c) Calculate the total number of executed instructions of the algorithm and give its order of magni-
tude.

3



Exercise 7-6 To be discussed

Find the total number of instructions and the order of magnitude of the following algorithm:

list_A = eval(input())
n = len(list_A)
i = 0
while (i < int(n/2)):

tmp = list_A[i]
list_A[i] = list_A[n-(i+1)]
list_A[n-(i+1)] = tmp
i = i + 1

print(list_A)

Exercise 7-7 To be discussed

Find the total number of instructions and the order of magnitude of the following algorithm and determine
the best and worst case scenarios:

list_A = eval(input("Enter List"))
n = len(list_A)
x = eval(input("Enter Number"))
i = n - 1
c = 0
while(i>=0):

if(list_A[i] < x):
list_A[i] = 0

else:
list_A[i] = 1
c +=1

i-=1
print(list_A,", ",c)

Exercise 7-8

Find the total number of instructions and the order of magnitude of the following algorithm and determine
the best and worst case scenarios:

a = eval(input())
b = eval(input())
m = len(a)
k = len(b)
c = []
i = 0
if(m <= k):

n = m
else:

n = k
while(i < n):

c = c + a[i]
c = c + b[i]
i += 1

if(i < m):
while(i < m):

c = c + a[i]

4



i += 1
elif(i < k):

while(i < k):
c = c + b[i]
i += 1

print(c)

5


