CSEN102

Introduction to Computer Science

Lecture 7: Representing Information I

Prof. Dr. Slim Abdennadher

Dr. Aysha Alsafty, slim.abdennadher@guc.edu.eg, aysha.alsafty@guc.edu.eg

German University Cairo, Department of Media Engineering and Technology

02.12.2017 - 07.12.2017

1 Synopsis

1.1 Synopsis

Synopsis

What you have learned so far:

- The idea of *algorithms*
 - The idea of the meta-solution, history, aspects, definition
- Notation and principal components of algorithms
 - pseudo-code
 - sequential, conditional, and iterative control-flow
- Aspects and efficiency of algorithms
 - Analysis of time and space efficiency, depending on the input size
 - Order of magnitude: constant, linear, cubic, ... $(O(1), O(n), O(n^2), ...)$

In theory, you are now able to write an *algorithm* for any given computable function.

2 Number systems

2.1 Notation through history

And now to something completely different...

Positional numbering systems: decimal

1, 10, 100, ... are all powers of ten!

The meaning of a decimal number:

 $9 \times 10^{0} + 3 \times 10^{1} + 1 \times 10^{2} + 3 \times 10^{3} + 2 \times 10^{4} + 6 \times 10^{5} + 5 \times 10^{6} = 5,623,139$

- This is why it is called decimal
- The position determines the power of 10, with which the *digit at the position has to be multiplied*!
- The first position is with $10^0 = 1$, the second with $10^1 = 10$, and so on...

Finding the perfect base

Question

How do I choose a good base?

- Which one is best? 10? 20? 60?
- Base 10 allows to counting with your fingers
- Base 20 allows to counting with your fingers and toes
- Base 60 is a clever *mathematical choice* because it has *many factors* (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60)
- Another clever *mathematical choice* would be a *prime number* as base such as 7 or 11 (opposite idea).

2.2 Computer numbering system

The right numbering system

Question

What base should we chose for a Computer?

Computers run with electricity

There are *two* distinct states of most electrical devices (including the transistor G which is the basis of computers):

 \Rightarrow So we should chose a *base two* system!

3 Binary numbers

3.1 Binary position system

Introduction to binary numbers

For the *binary* system we use the powers of 2:

$$2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 16, \dots$$

Example 1.

 $5,623,139_{10} = 10101011100110101100011_2$

Observations

- We need two different symbols (on-off, true-false, 1-0, high-low, etc.)
- To write the decimal number 5,623,139 in binary, we need 23 digits.
- A modern computer usually uses 64 digits, which allows for roughly 18.4 thousand trillion numbers.

Terms and names

Some terms:

Bit : The single binary digit (0 or 1), the smallest unit of information.

Byte : Eight bit, which means up to 256 different numbers in positional binary.

Word : The base number of digits used by a computer, usually eight byte or 64 bit.

3.2 Using binary

Familiar bases

Observation

It is tedious to switch between binary and decimal!

It is much *easier* with these bases:

- Octal, or base 8
- Hexadecimal, or base 16 (do not mix up with "hexagesimal"!)

Octal, hexadecimal, and binary

Imagine a numbering system with base 8 (Octal)

• Numbers: 0, 1, 2, 3, 4, 5, 6, 7

Example translation:

$$\frac{10110100100100101101110110}{5} = 5136_8$$

Imagine a numbering system with base 16 (Hexadecimal)

• Numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Example translation:

$$\frac{10101010010101010111101110}{A} = A5E_{16}$$

3.3 First summary

Summary

- We are used to a *base 10* positional system
- Other bases (20, 60) were used through history
- Generally, a base *n* system encodes numbers as follows:

 $(x_i x_{i-1} \dots x_1 x_0)_n = x_i \times n^i + x_{i-1} \times n^{i-1} + \dots + x_1 \times n^1 + x_0 \times n^0$

- We can convert any positional system into any other positional system
 - 1. Write down the digits
 - 2. Multiply each digit by its positional value (the respective power of the base)
 - 3. Add the products
- Some conversions are very *convenient* (binary-octal, binary-hexadecimal, ...)
- Binary is *ideal for computers*

3.4 Conversions

Two important conversions: Binary to decimal

Problem:

Convert a binary number into decimal

- 1. Write down the binary number
- 2. Write down the positional weight (the factor)
- 3. Multiply each digit by its weight
- 4. Do the sum

	Number:	1	0	1	1	0	0	0	1
Example 2.	Positional weight:	2^{7}	2^{6}	2^5	2^{4}	2^3	2^{2}	2^1	2^{0}
	Factor:	128	64	32	16	8	4	2	1
	128 + 0 + 32 +	16 + 0	+0 -	+0+	1 = 1	77_{10}			

Two important conversions: Decimal to binary

Problem:

Convert a decimal number into binary

Solution by successive division:

- 1. Divide by the base (i. e., 2) and write down the remainder
- 2. Repeat division until the quotient equals 0
- 3. Read the binary number by reading the remainders (bottom-up)

	Division	Quotient	Remainder	
	43/2	21	1	
	21/2	10	1	
Convert 43 into binary	10/2	5	0	$43_{10} = 101011_2$
	5/2	2	1	
	2/2	1	0	
	1/2	0	1	

Conversion in general

Both algorithms work for any base!

<i>Example</i> 3 (Convert (base 60) to decimal:).	Number: Positional weight:	60^{1}	60^{0}	1500 +
	Factor:	60	1	
$46 = 1546_{10}$				
	Division	Ounti	ant	Domainda

	Division	Quotient	Remainder
$E_{\rm e} = 1.4$ ($C_{\rm e} = 4.154$) (1.001) (1.001) (1.001)	1546/16	96	10
<i>Example</i> 4 (Convert 1346 (base 10) to nexadecimal).	96/16	6	0
	6/16	0	6
1540 004			

 $1546_{10} = 60A_{16}$

Conversion in general

Hence you can now convert any base to any other base

Problem

Convert N_1 with base n to N_2 with base m

Solution:

- 1. Convert N_1 of base n to a decimal number N
- 2. Convert N to the number N_2 base m

Note:

The conversions also work directly as a transition from base n to base m (without the indirection over decimal).

It is just unusual.