German University in Cairo Faculty of Media Engineering and Technology Prof. Dr. Slim Abdennadher Dr. Aysha ElSafty

Introduction to Computer Science, Winter Semester 2017 Practice Assignment 11

Discussion: 30.12.2017 - 04.01.2018

Exercise 11-1 To be Discussed in Tutorial

Simplify the Boolean expressions to a minimum number of literals using the Boolean algebra. Please mention the applied rules.

x + 0 = x	x * 1 = x	
x + 1 = 1	x * 0 = 0	
x + x = x	x * x = x	
x + x' = 1	x * x' = 0	
(x')' = x		
x + y = y + x	xy = yx	Commutativity
x + (y + z) = (x + y) + z	x(yz) = (xy)z	Associativity
x(y+z) = xy + xz	x + yz = (x + y)(x + z)	Distributivity
(x+y)' = x'y'	(xy)' = x' + y'	DeMorgan's Law

- a) ABC + ABC' + A'B
- b) (A+B)'(A'+B')
- c) (A + B' + AB')(AB + A'C + BC)
- d) P'XY + PX'Y + PXY' + PXY
- e) (AB)'(A+B)
- f) B + A'C + AB'
- g) AB + A'C + BC

Exercise 11-2

Given the following Boolean expression, simplify it to a minimum number of literals using the Boolean algebra. Please mention the applied rules.

$$((A+B)(B'+C'+D')) + B'C'(A+B'+C) + A'C + D$$

Hint: The circuit of the simplified expression consists of zero gates.

Exercise 11-3

Use AND, OR and NOT gates to implement the circuits represented by the following two expressions:

$$S = P'X'Y + P'XY' + PX'Y' + PXY$$
$$C = P'XY + PX'Y + PXY' + PXY$$

Exercise 11-4 To be Discussed in Tutorial

Draw a logic circuit that corresponds to each of the expressions shown below:

- a) AB' + A'C'D' + A'B'D + A'B'CD'
- b) B' + A'C'D'
- c) (A' + B' + C + D')(A + B + C' + D)

Exercise 11-5

Given the following the following truth table, where \mathbf{A} , \mathbf{B} and \mathbf{C} are the input variables and \mathbf{X} is the output variable.

Α	B	\mathbf{C}	X	
0	0	0	1	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	0	

- a) Use the sum-of-products algorithm to find the Boolean expression that describes the output of the truth table.
- b) What is the functionality of the circuit?
- c) Draw the Boolean circuit. Note that each gate can have only two inputs.

Exercise 11-6 Comparator

A one-bit comparator is a circuit that takes two numbers consisting of one bit each and outputs 1 if the numbers are equal, 0 otherwise.

- a) Construct a truth table for a one bit equality comparator.
- b) Assume that you have already manufactured one-bit comparators.

Design a circuit that uses one-bit comparators and AND-gates to check the equality of two numbers consisting of 4 bits each.

c) Assume that our one-bit comparator was modified to have two input variables A, B and three output variables (one checking for A = B, one checking for A > B and one checking for A < B).

Design a circuit that uses the modified one-bit comparators with other gates to compare two numbers consisting of 2 bits each. Do not draw the truth table.

Exercise 11-7 To be Discussed in Tutorial

A circuit should be designed to perform the operation (A - 1) where A represents a number in sign/magnitude notation consisting of 2 bits.

- a) How many output variables are needed? Justify your answer.
- b) Construct the truth table for this circuit.
- c) Use the sum-of-products algorithm to find the Boolean expressions that corresponds to the truth table.
- d) Simplify the Boolean expressions that you got in c) to a minimum number of literals using the Boolean algebra. Please mention the applied rules.
- e) Draw a logic circuit that corresponds to the simplified expressions you got in d).