German University in Cairo Faculty of Media Engineering and Technology Prof. Dr. Slim Abdennadher Dr. Aysha ElSafty

Introduction to Computer Science, Winter Semester 2017 Practice Assignment 11

Discussion: 30.12.2017 - 04.01.2018

Exercise 11-1 To be Discussed in Tutorial

Simplify the Boolean expressions to a minimum number of literals using the Boolean algebra. Please mention the applied rules.

x + 0 = x	x * 1 = x	
x + 1 = 1	x * 0 = 0	
x + x = x	x * x = x	
x + x' = 1	x * x' = 0	
(x')' = x		
x + y = y + x	xy = yx	Commutativity
x + (y + z) = (x + y) + z	x(yz) = (xy)z	Associativity
x(y+z) = xy + xz	x + yz = (x + y)(x + z)	Distributivity
(x+y)' = x'y'	(xy)' = x' + y'	DeMorgan's Law

a) ABC + ABC' + A'B

Solution:

$$ABC + ABC' + A'B$$

=	AB(C+C') + A'B	(Distributivity)
=	AB*1+A'B	[x + x' = 1]
=	AB + A'B	[x * 1 = x]
=	BA + BA'	(Commutativity)
=	B(A+A')	(Distributivity)
=	B * 1	[x + x' = 1]
=	В	[x * 1 = x]

b) (A+B)'(A'+B')

$$\begin{aligned} (A+B)'(A'+B') \\ &= (A'B')(A'+B') \quad [(x+y)'=x'y'] \\ &= A'B'A'+A'B'B' \quad \textbf{(Distributivity)} \\ &= A'A'B'+A'B'B' \quad \textbf{(Commutativity)} \\ &= A'B'+A'B' \quad [x*x=x] \\ &= A'B' \quad [x+x=x] \\ &= (A+B)' \quad \textbf{(DeMorgan's Law)} \end{aligned}$$

c) (A + B' + AB')(AB + A'C + BC)

Solution:

$$\begin{array}{ll} (A+B'+AB')(AB+A'C+BC)\\ = (A+B'(1+A))(AB+BC+A'C) & (\text{Distributivity})\\ = (A+B'(A+1))(AB+BC+A'C) & (\text{Commutativity})\\ = (A+B'*1)(AB+BC+A'C) & [(x+1)=1]\\ = (A+B')(AB+BC+A'C) & [(x*1)=x] \end{array}$$

$$\begin{array}{ll} = (A+B')*AB+(A+B')*BC+(A+B')*A'C & (\text{Distributivity})\\ = AB*(A+B')+BC*(A+B')+A'C*(A+B') & (\text{Commutativity})\\ = ABA+ABB'+BCA+BCB'+A'CA+A'CB' & (\text{Distributivity})\\ = AAB+ABB'+BCA+BB'C+AA'C+A'CB' & [(x*x)=x]\\ = AB+ABB'+BCA+BB'C+AA'C+A'CB' & [(x*x)=x]\\ = AB+ABB'+BCA+BB'C+AA'C+A'CB' & [(x*x)=x]\\ = AB+ABC+A'B'C & (Commutativity)\\ = AB(1+C)+A'B'C & (Distributivity)\\ = AB*1+A'B'C & [(x+1)=1]\\ = AB+A'B'C & [(x*1)=x] \end{array}$$

d) P'XY + PX'Y + PXY' + PXY

Solution:

$$P'XY + PX'Y + PXY' + PXY$$

= $PXY + P'XY + PXY' + PXY'$ (Commutativity)
= $XYP + XYP' + PX'Y + PXY'$ (Commutativity)
= $XY(P + P') + PX'Y + PXY'$ (Distributivity)
= $XY * 1 + PX'Y + PXY'$ [$(x + x') = 1$]
= $XY + PX'Y + PXY'$ [$(x * 1) = x$]
= $XY + P(X'Y + XY')$ (Distributivity)

e) (AB)'(A+B)

$$(AB)'(A + B) = (A' + B')(A + B) [(xy)' = x' + y']$$

= $(A' + B')A + (A' + B')B$ (Distributivity)
= $A(A' + B') + B(A' + B')$ (Commutativity)
= $AA' + AB' + BA' + BB'$ (Commutativity)
= $0 + AB' + BA' + 0$ [$(x * x' = 0)$]
= $AB' + 0 + BA' + 0$ (Commutativity)
= $AB' + BA' = [(x + 0 = x)]$

To construct a circuit for (AB)'(A+B), we will need 4 gates. To construct a circuit for AB' + BA', we need 5 gates. Thus (AB)'(A+B) is simpler than AB' + BA'.

f) B + A'C + AB'

Solution:

$$\begin{array}{ll} B + A'C + AB' \\ = B + AB' + A'C & (\text{Commutativity}) \\ = B + B'A + A'C & (\text{Commutativity}) \\ = (B + B')(B + A) + A'C & [(x + yz) = (x + y)(x + z)] \\ = 1 * (B + A) + A'C & [(x + x' = 1)] \\ = (B + A) * 1 + A'C & (\text{Commutativity}) \\ = (B + A) * 1 + A'C & [(x * 1 = x)] \\ = A + A'C + B & (\text{Commutativity}) \\ = (A + A')(A + C) + B & [(x + yz) = (x + y)(x + z)] \\ = 1 * (A + C) + B & [(x + yz) = (x + y)(x + z)] \\ = (A + C) * 1 + B & (\text{Commutativity}) \\ = A + C + B & [(x * 1 = x)] \end{array}$$

g) AB + A'C + BC

Solution:

$$AB + A'C + BC$$

$$= AB + A'C + BC * 1 \qquad [(x * 1 = x)]$$

$$= AB + A'C + BC(A + A') \qquad [(x + x' = 1)]$$

$$= AB + A'C + BCA + BCA' \qquad (Distributivity)$$

$$= AB + A'C + ABC + A'CB \qquad (Commutativity)$$

$$= AB(1 + C) + A'C(1 + B) \qquad (Distributivity)$$

$$= AB(C + 1) + A'C(B + 1) \qquad (Commutativity)$$

$$= AB * 1 + A'C * 1 \qquad [(x + 1 = 1)]$$

$$= AB + A'C$$

Exercise 11-2

Given the following Boolean expression, simplify it to a minimum number of literals using the Boolean algebra. Please mention the applied rules.

$$((A+B)(B'+C'+D')) + B'C'(A+B'+C) + A'C + D$$

Hint: The circuit of the simplified expression consists of zero gates.

=	AB' + AC' + AD' + BB' + BC' + BD' + AB'C' + B'B'C' + B'C'C + A'C + D	(Distributivity)
=	AB' + AC' + BB' + BC' + BD' + AB'C' + B'C' + B'C'C + A'C + D + AD'	(Associativity)
=	AB' + AC' + BB' + BC' + BD' + AB'C' + B'C' + B'C'C + A'C + (D + A)(D + D')	(Distributivity)
=	AB' + AC' + BB' + BC' + BD' + AB'C' + B'C' + B'C'C + A'C + (D+A)(1)	(x + x' = 1)
=	AB' + AC' + BB' + BC' + BD' + AB'C' + B'C' + B'C'C + A'C + D + A	(x*1=x)
=	AB' + AC' + BB' + BD' + AB'C' + B'C'C + A'C + D + A + BC' + B'C'	(Associativity)
=	AB' + AC' + BB' + BD' + AB'C' + B'C'C + A'C + D + A + C'(B + B')	(Distributivity)
=	AB' + AC' + BB' + BD' + AB'C' + B'C'C + A'C + D + A + C'(1)	(x + x' = 1)
=	AB' + AC' + BB' + BD' + AB'C' + B'C'C + A'C + D + A + C'	(x * 1 = x)
=	AB' + AC' + BB' + BD' + AB'C' + B'C'C + D + A + C' + A'C	(Associativity)
=	AB'+AC'+BB'+BD'+AB'C'+B'C'C+D+A+(C'+A')(C'+C)	(Distributivity)
=	AB' + AC' + BB' + BD' + AB'C' + B'C'C + D + A + (C' + A')(1)	(x + x' = 1)
=	AB' + AC' + BB' + BD' + AB'C' + B'C'C + D + A + C' + A'	(x * 1 = x)
=	AB' + AC' + BB' + BD' + AB'C' + B'C'C + D + C' + (A + A')	(Associativity)
=	AB' + AC' + BB' + BD' + AB'C' + B'C'C + D + C' + 1	(x + x' = 1)
=	(AB' + AC' + BB' + BD' + AB'C' + B'C'C + D + C') + 1	(x + 1 = 1)
=	1	

Exercise 11-3

Use AND, OR and NOT gates to implement the circuits represented by the following two expressions:

$$S = P'X'Y + P'XY' + PX'Y' + PXY$$
$$C = P'XY + PX'Y + PXY' + PXY$$

Exercise 11-4 To be Discussed in Tutorial

Draw a logic circuit that corresponds to each of the expressions shown below:

a) AB' + A'C'D' + A'B'D + A'B'CD'

b) B' + A'C'D'

c) (A' + B' + C + D')(A + B + C' + D)

Exercise 11-5

Given the following the following truth table, where \mathbf{A} , \mathbf{B} and \mathbf{C} are the input variables and \mathbf{X} is the output variable.

Α	В	\mathbf{C}	X
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

a) Use the sum-of-products algorithm to find the Boolean expression that describes the output of the truth table.

Solution:

$$x = A'B'C' + A'BC + AB'C + ABC'$$

b) What is the functionality of the circuit?

Solution:

The circuit computes the parity of a number. The parity bit is equal to 1 if the number of ones is even otherwise, the parity bit is equal to 0.

c) Draw the Boolean circuit. Note that each gate can have only two inputs.

Exercise 11-6 To be Discussed in Tutorial Comparator

A one-bit comparator is a circuit that takes two numbers consisting of one bit each and outputs 1 if the numbers are equal, 0 otherwise.

a) Construct a truth table for a one bit equality comparator.

Solution:

х	у	Output
0	0	1
0	1	0
1	0	0
1	1	1

b) Assume that you have already manufactured one-bit comparators.

Design a circuit that uses one-bit comparators and AND-gates to check the equality of two numbers consisting of 4 bits each.

c) Assume that our one-bit comparator was modified to have two input variables A, B and three output variables (one checking for A = B, one checking for A > B and one checking for A < B).

Design a circuit that uses the modified one-bit comparators with other gates to compare two numbers consisting of 2 bits each. Do not draw the truth table.

Exercise 11-7 To be Discussed in Tutorial

A circuit should be designed to perform the operation (A - 1) where A represents a number in sign/magnitude notation consisting of 2 bits.

a) How many output variables are needed? Justify your answer.

Solution:

3 output variables are needed. 2 bits in sign magnitude can represent a range of [-1, 1]. Thus the output of calculating -1 - 1, which is equal to -2, needs 3 bits to represent it in sign/magnitude notation (110).

b) Construct the truth table for this circuit.

Solution:

A1	A2	01	O2	O3
0	0	1	0	1
0	1	0	0	0
1	0	1	0	1
1	1	1	1	0

c) Use the sum-of-products algorithm to find the Boolean expressions that corresponds to the truth table.

Solution:

$$O1 = A1'A2' + A1A2' + A1A2O2 = A1A2O3 = A1'A2' + A1A2'$$

d) Simplify the Boolean expressions that you got in c) to a minimum number of literals using the Boolean algebra. Please mention the applied rules.

O1 =	A1'A2' + A1A2' + A1A2	
O1 =	A2'A1' + A2'A1 + A1A2	(Commutativity)
O1 =	A2'(A1'+A1) + A1A2	(Distributivity)
O1 =	A2'*1+A1A2	(x' + x = 1)
O1 =	A2' + A1A2	(x*1=x)
O1 =	(A2' + A1)(A2' + A2)	(Distributivity)
O1 =	(A2' + A1) * 1	(x' + x = 1)
O1 =	(A2' + A1)	(x * 1 = x)
O2 =	A1A2	
O3 =	A1'A2' + A1A2'	
O3 =	A2'A1' + A2'A1	(Commutativity)
O3 =	A2'(A1' + A1)	(Distributivity)
O3 =	A2' * 1	(x' + x = 1)
O3 = O3 =	$\begin{array}{c} A2'*1\\ A2' \end{array}$	(x' + x = 1) $(x * 1 = x)$

e) Draw a logic circuit that corresponds to the simplified expressions you got in d).

