
German University in Cairo
Media Engineering and Technology
Prof. Dr. Slim Abdennadher

Computer Programming Lab,
Lab Assignment1

This lab assignment aims at modifying the work of last week’s home assignment, “Spaghetti”, by intro-
ducing the concepts of Inheritance and Encapsulation into the project.

Supermarkets offer various Grocery products. In our model, we are only concerned with two types of
Grocery products; DairyProduct and Beverage. These two types of Grocery products share certain
traits and characteristics while they differ in others. Your task is to develop a hierarchy of classes and
apply the concepts of Inheritance and Encapsulation to produce an organized code.

Exercise 1-1
Packages

Programmers typically use packages to organise classes belonging to the same category or providing
similar functionality. Thus for this project, you must organise your work into the following packages:
guc.supermarket
guc.supermarket.products

———————————————————–Inheritance———————————————————–
Java Tips

• The attributes that are shared by all subclasses should be declared in the superclass.

Exercise 1-2
GroceryProduct Class

The class GroceryProduct is a generic class. It should have all variables and methods that apply
generically to all grocery products. There are 2 types of Grocery Products: Dairy Products and Beverages.

Exercise 1-3
DairyProduct Class

Every supermarket offers some dairy products like Milk, Cheese, Jogurt, etc. In our supermarket project
we will represent the dairy products using the DairyProduct class obeying the following set of characte-
ristics:

• It should be placed in the guc.supermarket.products package.

• Each dairy product should have a name, price, and discount(0%-100%).

• Each dairy product should have a measure of the contained fat. The contained Fat of a dairy
product is usually classified as FULLCREAM, HALFCREAM, or SKIMMED. This should be represented
using Enumeration.

• Appropriate constructors should be implemented, in order to allow creating dairy products while
specifying their name, price, discount and fat. Note that the parameters of the constructor should
be passed in the previously given order.

1



Exercise 1-4
Beverage class

Supermarket offers some beverages like fizzy drinks, juices, etc. In our supermarket project we will
represent the beverages using the Beverage class obeying the following set of characteristics:

• It should be placed in the guc.supermarket.products package.

• Each beverage should have a name, price, and discount(0%-100%).

• Each beverage should have a measure of the contained sugar level. The Sugar level could be
LIGHT, ZERO, ADDED_SUGAR, or NO_ADDED_SUGAR. This should be represented using Enumeration.

• Appropriate constructors should be implemented, in order to allow creating beverages while spe-
cifying their name, price, discount and sugar level. Note that the parameters of the constructor
should be passed in the previously given order.

————————————————-Inheritance - Overriding———————————————–

Java Tips

• The method that has the same behaviour for all subclasses should be implemented once in the
superclass, and thus inherited by all the subclasses.

• The method that is common between all subclasses but has a different behaviour for each and every
subclasses should be declared in the superclass and overridden in each subclass.

• A method is declared as FINAL if it is not to be overridden by any subclass.

Exercise 1-5
DairyProduct Class

The DairyProduct class has the following methods:

• A method getActualPrice() should be implemented to get the actual price of the dairy product, i.e.
original price - discount amount. (DiscountAmount = price× (discount/100))

• The String toString() method should be overridden to produce a string representing all infor-
mation about the product. For example:
Name: Juhayna Milk
Price: 10.0 L.E.
Discount: 25.0 %
Fat Level: Half-Cream

Exercise 1-6
Beverage class

The Beverage class has the following methods:

• A method getActualPrice() should be implemented to get the actual price of the beverage, i.e.
original price - discount amount. (DiscountAmount = price× (discount/100))

• The String toString() method should be overridden to produce a string representing all infor-
mation about the product. For example:
Name: Coke Zero
Price: 5.0 L.E.
Discount: 12.5 %
Sugar Level: ZERO

2



Exercise 1-7
Do you get overriding?

Given the following piece of code:

DairyProduct milk= new DairyProduct("Juhayna Milk", 10, 5, Fat.FULLCREAM);
System.out.println(milk.toString());

Which toString() will be invoked?
The toString() method in the class: DairyProduct, GroceryProduct or Object?

Exercise 1-8
Testing our code

In order to make sure that everything is working correctly, we will test using JUnit tests.

Download the test file Lab2PublicTest from the MET website.

Test files should be placed in a separate package for a better organization.

You should place the test file in the package guc.supermarket.tests.

———————————————————–Encapsulation———————————————————

Java Tips

• You cannot override a method in a subclass giving it a more restricted access modifer than that of
the superclass.

• Use the protected access modifer when a superclass should provide a method only to its subclass
and other classes in the same package, but not to other classes.

Instance variables should be declared as private and appropriate methods should be implemented to
manipulate them.

It is highly recommended that instance variables of superclasses are declared as private, rather than
protected or public, and non-private methods are implemented to access such variables. Thus ensuring
that all variables can be accessed from subclasses.

Exercise 1-9
Encapsulation

The objective of this exercise is to re-declare the instance variables of the classes you have previously
implemented to be private variables with READ and WRITE access given to the subclasses.

Make sure you update the variables in all the classes: GroceryProduct, DairyProduct and Beverage

For example, the instance variable name of the GroceryProduct class should be declared as follows:

private String name;

And the appropriate methods should be implemented as follows:

String getName(){
return this.name;

}

void setName(String name){
this.name = name;

}

3


